
About Lab 07

In Lab 7 you will write 2 programs that play games
with words:

• Program distill.py asks the user for a file name

and a number n. It then prints the file, leaving
out the n most common words.

• Program anagrams.py asks the user for the name
of a dictionary file. It then goes into a loop
asking for a string and printing anagrams of that
string.

The distill program uses dictionaries and the
anagrams program uses sets.

Most of the distill program is straightforward. You
want a dictionary to hold words and their counts -
- the keys will be words, the value associated with
a word is the number of times you have seen it. If
your dictionary is called D (that's a crappy name
for a dictionary; use something more meaningful)
you will have code like this:
 if word in D.keys():
 D[word] = D[word] + 1
 else:
 D[word] = 1

The keys should be real words and you'll get words
with punctuation attached (such as "Bob!") so we
suggest that you write a function cleanstring(s) that
starts with s, turns it into lower-case, removes all
punctuation, and returns the result. The
punctuation comes at the end of the word, and
occasionally at the beginning.

Just as in the Concordance program, our friend the
strip() method for strings comes in handy here. If
s is a string,
 s.strip(punct)
returns a copy of s with all of the letters of punct
removed from both the start and the end of s.

So make your self a punctuation string and put in it
every punctuation mark you can think of.

Once you have built the dictionary you need to find
the n most common words. The easiest way I can
find for that is to do the first n steps of
SelectionSort. Put the whole dictionary into a list
of [word, count] pairs. Make a pass through it,
looking for the index of the word with the largest
count. Interchange that entry with the entry at
index 0. Make a pass starting at index 1, looking
for the largest remaining element, and interchange
that with the element at index 1, and so forth.

Once you have the n most common words in a list,
make another pass through the file. Divide it into
words, check to see if the cleanstring() version of
each word is one of the most common words, and if
not print it.

There is only one tricky place. It is possible for
cleanstring(s) to return an empty string. For
example, one of the files has a "word" that is "---".
When you strip off the punctuation there is nothing
left. Don't put such words into your dictionary.

 The anagrams program asks you to enter the name
of a dictionary file, which it loads and stores as a set
of words. It then goes into a loop where it asks the
user for a string, removes the spaces from the string,
and then prints all of the anagrams it can make from
the string using words from the dictionary.

For example, if you enter "oberlin student", among
the many anagrams it finds are
 let none disturb
 let in; runs to bed
 trust line on bed
For "oberlin conservatory" it finds
 boy never controls air
 so convert one library
 only recover in bars
And for "hermione granger" it finds
 ignore green harm

The program is fun to play with and a great time-
waster, but it does run on. For every set of words
making up an anagram, it will print every possible
ordering of the words. I counted almost 35,000
lines of output in response to "oberlin student".

 There are really just two major functions that you
need to write for this. The first of these is
contains(s, word), which returns a pair of values. If
string s does not contain string word, this returns
(False, ""). If s does contain word, this returns
(True, t) where string t is the same as string s with
the letters of word removed.

For example, contains("bombast","bob") returns
(True, "mast") while contains("bouncy", "bob")
return (False,"") since "bouncy" has only one 'b'.

contains(s, word) should be easy to write. We set a
variable t = s, then loop through the letters of word
checking to see if they are in t and if so removing
them. If we are able to remove all of the letters of
word we return True and whatever is left of t. If one
of the letters of word is not in t we return (False, "")

Here is an easy way to remove the first instance of
letter 'a' from t:
 t = t.replace("a", 1)
Technically that says to replace the first instance of
"a" with the empty string.

The other function you need to write is
grams(s, words, sofar) which is a recursive
function that prints anagrams. s is a string we
want to find anagrams for. words is our
dictionary set. sofar is a list of words we have
taken so far out of the string. The function looks
for words that s contains and recurses on what is
left, with the word added to the sofar list. If it
recurses down to where s is the empty string, it
prints the sofar list.

For example, if we call
 grams("hermionegranger", words, [])
we eventually find that
 contains("hermionegranger", "ignore")
returns (True, "hmeranger") so we recurse with
 grams("hmeranger", words, ["ignore"])

We eventually find that
 contains("hmeranger", "green")
returns (True, "hmar") so we recurse with
 grams("hmar", words, ["ignore", "green"])

grams("hmar", words, ["ignore", "green"])
eventually finds that
 contains("hmar", "harm") returns
(True, "") so we recurse on
 grams("", words, ["ignore", "green", "harm"])
and since the string argument is now empty we
print the anagram:
 ignore green harm

The trickiest thing about grams(s, words, sofar) is
that each time you find a match for s you need to
rebuild the sofar list. This is the reverse side of
mutability -- if you only append to sofar then you
only have one list and there is no way to remove
anything from it. So if s contains word t with s1 left
over then you will recurse on
 grams(s1, words, L)
where we get the new list L with
 L = []
 L.extend(sofar)
 L.append(t)

Alternatively, you could recurse with
 grams(s1, words, sofar+[t])

